¹ Ocular Surface Disease

Dry Eye Syndrome

Aqueous Tear Deficiency Dry Eye Syndrome

Evaluation and Diagnosis of Aqueous Tear Deficiency Dry Eye Syndrome

- Clinical findings: decreased tear meniscus (1.0 mm is normal), epithelial keratopathy (stains help visualize), filaments
 - Binds to intercellular junction breaks/epithelial loss: fluorescein
 - Stains devitalized epithelium: rose bengal (toxic to epithelium, irritant use with topical anesthetic), lissamine green
 - Helpful for staining conjunctiva: lissamine green
 - Severe sequelae of aqueous tear deficiency dry eye: corneal thinning/perforation, band keratopathy, keratinization

Filamentary Keratopathy

- Features: strands of degenerating epithelial cells strongly attached to corneal surface over mucus core, may be very painful
- Associations: blepharitis, meibomian gland dysfunction, superior limbic keratoconjunctivitis, vernal keratoconjunctivitis
- Treatment: acetylcysteine 10% drops

Sjögren Syndrome

- Aqueous tear deficiency associated with inflammation (10% of aqueous tear deficiency)
- Causes
 - Primary (idiopathic)
 - Hypergammaglobulinemia
 - Rheumatoid arthritis
 - Collagen vascular disease
- Pathophysiology: T-cell mediated inflammation with lacrimal gland dysfunction eventually resulting in fibrosis of lacrimal gland
- Associations: 5% of primary Sjögren syndrome develop lymphoma
- Treatment for Sjögren-related dry eyes: oral cholinergic agonists, zidovudine

Non-Sjögren Syndrome

- Causes
 - **Primary lacrimal gland disease:** Riley-Day, congenital alacrima, anhidrotic ectodermal dysplasia, Adie syndrome, Shy-Drager syndrome
 - Secondary lacrimal gland disease: sarcoidosis, graft-vs-host disease, HIV, xerophthalmia, surgical ablation
 - Lacrimal outflow obstruction: cicatricial conjunctivitis (trachoma, SJS, chemical burns, OCP)
 - Decreased lacrimal secretion: anticholinergic meds, viruses, contact lens wear, peripheral neuropathy (DM, Bell's palsy), corneal surgery (LASIK, PK, cataract extraction)

Evaporative Dry Eye Syndrome

Evaluation and Diagnosis of Evaporative Dry Eye Syndrome

- Meibomian gland dysfunction (primary abnormality)
- Tear breakup time: use fluorescein (no anesthetic) in fornix and count until dry spots appear; < 10 seconds is abnormal

Blepharitis

- Topical azithromycin: lipophilic, reduces the production of bacterial lipases, improves meibomian lipids
- Oral tetracyclines (doxycycline, minocycline): anti-inflammatory (suppresses leukocyte migration, reduces production of nitric oxide and reactive oxygen species, inhibits matrix metalloproteinases, inhibits phospholipase A2), suppresses bacterial lipases; don't use in pregnancy/breastfeeding, children < 14 yo (permanent discoloration of teeth/bones), minocycline can deposit purple discoloration in skin/cartilage (looks like bruising), decreased efficacy of contraceptives, can increase intracranial pressure

Angular Blepharitis

- Causes: Staphylococcus aureus (most common), Moraxella lacunata
- Clinical appearance: crusting/ulceration in lateral canthal angle, follicular conjunctivitis (Moraxella lacunata)

Rosacea

- Pathogenesis: cutaneous sebaceous gland dysfunction of face, neck, and shoulders (acneiform disorder)
 - Inflammatory infiltration: delayed hypersensitivity to lipid-producing glands/material
- Clinical presentation
 - Eyelids: increased sebum secretion, chronic blepharitis, lid telangiectasia, meibomian gland distortion, recurrent chalazia
 - Eyes: conjunctivitis, marginal corneal infiltrates, sterile ulcers, episcleritis, iridocyclitis, peripheral ulcerative keratitis, symblepharon, corneal scarring
 - Face: telangiectasias, recurrent papules/pustules, midfacial erythema, malar rash with flushing (triggers: alcohol vasomotor instability, coffee, foods), rhinopehyma (nose skin/connective tissue thickening, late characteristic finding)
- Management: tetracyclines (1st-line), topical metronidazole (facial erythema), topical steroids

Ichthyosis

- Excessively dry skin and scaly accumulation, phenotype with multiple systemic causes (see chart)
- Management: hydrate skin, unresponsive to steroids

Disease	Inheritance	Features		
Ichthyosis vulgaris (most common)	AD	Lid scalingCicatricial ectropionConjunctival thickening		
X-linked ichthyosis	XLR	 Corneal opacities (50%) Dots/filament-shaped opacities in pre-Descemet membrane or deep stroma more apparent with age but not visually significant Posterior embryotoxon 		
Sjögren-Larsson	AR	 Defect in fatty aldehyde dehydrogenase Paralysis + mental retardation + ichthyosis Crystalline retinopathy 		
KID (congenital <u>k</u> eratitis- <u>i</u> chthyosis- <u>d</u> eafness)		 Vascularizing keratitis that worsens with isoretinoin Primary limbal stem cell deficiency 		
Refsum	AR	 <u>R</u>etinopathy (RP-like bone spiculing, nyctalopia common) <u>E</u>ar (deafness) / <u>E</u>nlarged corneal nerves "<u>E</u>"ytanic (phytanic) acid accumulation <u>S</u>kin (ichthyosis) / <u>S</u>mell (anosmia) <u>U</u>ncoordinated (ataxia and polyneuropathy) <u>M</u>yopathy (cardiomyopathy) 		

Nutritional Disorders

Vitamin A Deficiency

- Pathogenesis: vitamin A is fat-soluble, stored in liver important for photoreceptor (rhodopsin) and goblet cell function (mucin)
 - Stressors (measles, diarrhea, HSV, bacteria, etc.): trigger vitamin A deficiency-related disease if liver reserves are low
- Risk factors: malnourishment, cystic fibrosis, biliary cirrhosis, bowel resection, unusual diets, chronic alcoholics (may present as persistent epithelial defect/ulceration unresponsive to treatment)
- Clinical presentation
 - Nyctalopia (earliest symptom)
 - Loss of mucus production by goblet cells
 - Xerosis (corneal/conjunctival dryness)
 - Bitôt spot: metaplastic keratinization + inflammation + debris + Corynebacterium xerosis
 - Keratomalacia (diffuse corneal necrosis)
 - Xerophthalmic fundus (rare, peripheral yellow-white spots in retina)
- Testing: ERG abnormal, VF constriction, low serum vitamin A or retinol-binding proteins
- Treatment: lubrication + systemic vitamin A (PO/IV/IM) + protein/calorie replacement
- Prognosis: guarded (untreated mortality of 50%)

Structural Disorders

٠

Exposure Keratopathy

- Pathogenesis: limited eyelid closure from lagophthalmos or proptosis
- Treatment: lubrication, taping lids shut, tarsorrhaphy, gold weights (MRI-safe, can induce astigmatism), horizontal lid tightening

Floppy Eyelid Syndrome

- Pathophysiology: eye rubbing/eversion of upper lid with pillow or clothes with floppy upper tarsus, upper lid papillae
- Associations: obesity, obstructive sleep apnea, keratoconus
- Treatment: shield/taping lids shut at night, eyelid tightening surgery

Superior Limbic Keratoconjunctivitis (of Theodore)

- Epidemiology: women, 20-70 yo, bilateral (asymmetric)
- Clinical presentation: staining and injection/thickening of superior bulbar conjunctiva, filamentary keratopathy
- **Histopathology:** nuclear pyknosis ("snake nuclei," condensation of nuclear chromatin), karyorrhexis (fragmentation of cell nucleus after pyknosis), **keratinization** of superior conjunctiva with **loss of goblet cells** and **acanthosis** (thickened epithelium)
- Associations: thyroid eye disease (20-65% of SLK patients have thyroid dysfunction order TSH, T₃/T₄, anti-thyroid antibodies)
- Treatment: reduce inflammation/friction between upper tarsal and bulbar conjunctiva

Causes of Decreased Goblet Cells

- Vitamin A deficiency
- Mucous membrane pemphigoid
- Pseudopemphigoid (topical β-blockers, miotics)
- Superior limbic keratoconjunctivitis
- Trachoma

Recurrent Corneal Erosion

- Pathogenesis
 - **Initial event:** sudden sharp abrading/shearing injury (fingernail, branch), EBMD, PRK (small superficial injuries rarely cause recurrent erosions)
 - Recurrent event: eyelid movements (early morning) peel off epithelium; poor epithelial adhesion (disorganized hemidesmosomes) + upregulation of gelatinase activity (MMP-2 and -9, cleaves collagen IV, V, VII, X)
- Clinical presentation
 - Sudden onset eye pain + redness + photophobia + tearing at night or first waking, pain out of proportion to findings, lasts 30 minutes to hours up to days
 - Topical anesthetics relieve symptoms
 - Examine contralateral eye to look for epithelial basement membrane changes
- Treatment
 - Acute: lubrication (antibiotics for prophylaxis), cycloplegia, debridement, topical NSAIDs, bandage contact lens
 - After epithelial defect healed: NaCl 5% (lubrication + transiently affects osmotic gradient), prophylactic lubricant, tetracyclines/topical steroids (inhibits local MMPs)
 - Recurrent/refractory disease: anterior stromal micropuncture, epithelial debridement, phototherapeutic keratectomy

Neurotrophic Keratopathy

- Pathogenesis: damage to CN V (corneal hypesthesia/anesthesia), increased tear film osmolarity
- Causes
 - Surgical: trigeminal ablation, PK, AK/LRI, LASIK
 - Neurological disease: CVA, aneurysms, MS
 - Tumors: acoustic neuroma, neurofibroma, angioma
 - Infections: herpes keratitis (most common), leprosy
 - Hereditary: Riley Day
 - Topical medications: anesthetics, NSAIDs, β-blockers, carbonic anhydrase inhibitors
 - Diabetes mellitus: diabetic neuropathy
- Treatment: eliminate aggravating topical medications, lubrication, promote re-epithelialization medically or surgically

Toxic Ocular Surface Disease

Topical Anesthetic Abuse

- Toxicity: inhibits epithelial migration and division
- Histopathology: loss of microvilli, decreased desmosomes, mitochondrial/lysosomal swelling
- Clinical presentation: early punctate keratopathy, neurotrophic ulcer, late neovascularization/keratic precipitates/hypopyon, diffuse stromal edema, dense infiltrates, ring opacity

Contact Lens Ocular Surface Disease

- Sattler's veil: central epithelial edema after RGP overwear due to hypoxia with lactate accumulation and impaired CO₂ efflux
- Microcystic epitheliopathy: fine epithelial cysts (best seen with retroillumination) associated with extended wear SCLs
- Toxic conjunctivitis: reaction to BAK, chlorhexidine, H₂O₂
- Thimerosal delayed hypersensitivity: contact lens-induced SLK
- Neovascularization: superficial pannus (reversible), deep stromal neovascularization (irreversible)

DDx of Recurrent Erosions

- Trauma
- Diabetes mellitus
- Corneal dystrophies (epithelial and stromal)
 - EBMD (most common)

Topical Ophthalmic Medications

- Pathogenesis: dose-dependent cytotoxicity; preservatives (usually benzalkonium chloride [BAK]) retained in epithelium
- Clinical presentation: punctate staining, subepithelial corneal infiltrates, conjunctival injection, papillary or follicular conjunctivitis, diffuse/whorled (vortex, hurricane) keratopathy, epithelial defects, neovascularization, limbal stem cell deficiency, drug-induced pemphigoid (see conjunctival inflammations)
- Management: discontinue offending agent (may take months to resolve), preservative-free artificial tears/ointment
 - Drug-induced pemphigoid: conjunctival biopsy with negative immunofluorescence (Michel fixative)

Clinical presentation	Offending Agents			
Limbal stem cell deficiency	Preserved topical agents, fibrin formation blockers (mitomycin C)			
Peripheral corneal infiltrates	Aminoglycosides, antiviral agents, BAK- or thimerosal-containing medications			
Chronic follicular conjunctivitis	Atropine, antiviral agents, miotics, sulfonamides, epinephrine (including dipivefrin), α- adrenergic agonists (e.g., apraclonidine, brimonidine tartrate), vasoconstrictors			
Conjunctival scarring (symblepharon)	Miotics, β-blockers			

Limbal Stem Cell Deficiency

- Pathogenesis: 25-33% of limbus must be preserved to prevent stem cell deficiency
 - Conjunctival stem cells: uniformly distributed on bulbar surface or in fornices
 - Corneal stem cells: basal cell layer of limbus
- **Pathophysiology:** \downarrow wound healing, irregular ocular surface, epithelial breakdown
- Clinical presentation
 - Symptoms: recurrent corneal ulceration, blurred vision (irregular cornea)
 - First sign: wavelike irregularity of epithelium (noted on fluorescein stain)
 - Increased epithelial permeability: fluorescein entering anterior stroma
 - "Conjunctivalization of cornea": goblet cells on corneal impression cytology
- Treatment
 - 1 eye (e.g., pterygium): autograft from ipsilateral or fellow eye
 - Both eyes (Stevens-Johnson syndrome, bilateral chemical burns, etc.): allograft with systemic immune suppression

Select Causes of Limbal Stem Cell Deficiency

- Anterior segment ischemia
- Antimetabolites (5-FU, MMC)
- Atopic keratoconjunctivitis
- Cicatrizing disease: SJS, OCP
- latrogenic: surgery/cryo/radiation
- Infections: herpes, trachoma
- PAX6 mutations (aniridia)
- Prolonged contact lens use
- Pterygium
 - PUK/Fuchs marginal keratitis
 - Sclerocornea
 - Trauma (chemical/thermal burns)

² Congenital and Developmental Abnormalities of the Anterior Segment

Primary Congenital Abnormalities of the Cornea

Anomalies of Shape and Size of the Cornea

Dimensions	Normal	Microcornea	Megalocornea	Cornea Plana
Horizontal corneal diameter at birth	9.5-10.5 mm	< 9 mm	> 12 mm	Variable
Horizontal corneal diameter after 2 years old	10.5-12.5 mm	< 10 mm	> 13 mm	Variable
Keratometry	43 D	Flat	Steep	Flat (30-35 D)

Cornea Plana

- Very flat corneal curvature (keratometry 30-35 D; normal 43 D); corneal curvature same as adjacent sclera is pathognomonic
- Inheritance/genetics: autosomal dominant and recessive; KERA gene (keratan sulfate proteoglycans)
- Ocular associations: high hyperopia (> 10.00 D), colobomas, angle-closure glaucoma (from shallow AC) or open-angle glaucoma (angle dysgenesis), sclerocornea, microcornea
- Systemic association: Ehlers-Danlos syndrome

Megalocornea

- Bilateral, nonprogressive enlargement of the cornea; horizontal diameter > 13 mm (> 12 mm at birth)
- Inheritance: X-linked recessive (90% males); carriers have larger corneas (example of lyonization)
- Ocular associations: myopia (steep cornea) and with-the-rule astigmatism are common, iris translucency (diaphanous), pigment dispersion, miosis, goniodysgenesis, cataract, ectopia lentis, arcus juvenilis, glaucoma

Microcornea

- Clear cornea, normal thickness, horizontal diameter < 10 mm (< 9 mm at birth)
- Inheritance: autosomal dominant (most common), autosomal recessive
- Ocular associations: hyperopia (flat cornea); [†] incidence of angle-closure glaucoma, 20% develop open-angle glaucoma later; persistent fetal vasculature (PFV); congenital cataracts; anterior segment dysgenesis; optic nerve hypoplasia
- Systemic associations (FAME): Fetal alcohol syndrome, Achondroplasia, Myotonic dystrophy, Ehlers-Danlos syndrome

Sclerocornea

- Nonprogressive, noninflammatory scleralization of cornea; ill-defined limbus; 90% are bilateral
- Inheritance: sporadic (most common)
- Ocular associations: cornea plana (80% of cases, most common ocular finding); angle malformations († glaucoma risk), limbal stem cell deficiency

Megalocornea Associations: "HARD CLIMB"

- <u>Hypertelorism / Hypotonia / facial H</u>emiatrophy
- <u>A</u>lport
- <u>R</u>etardation
- <u>D</u>own syndrome
- <u>C</u>raniosynostosis / <u>C</u>entral cloudy dystrophy of François
- muco<u>L</u>ipidosis type II
- <u>Imperfecta</u> (osteogenesis)
- <u>M</u>arfan
- <u>B</u>ossing (frontal)

Posterior Embryotoxon

- Thickened and anteriorly displaced Schwalbe line visible on external examination (up to 30% of normal eyes); typically bilateral
- Schwalbe line/ring: junction of trabecular meshwork and termination of Descemet membrane
- Inheritance: autosomal dominant
- Associations: Axenfeld-Rieger syndrome, Alagille syndrome (arteriohepatic dysplasia), X-linked ichthyosis, familial aniridia

Axenfeld-Rieger Syndrome

- Genetics/inheritance: autosomal dominant (75%), homeobox genes (FOXC1, PITX2)
- Ocular features: posterior embryotoxon, attached iris strands, iris hypoplasia, corectopia, pseudopolycoria, glaucoma (50%)
- Systemic features: teeth defects, facial bone defects, redundant periumbilical skin, pituitary abnormalities, hypospadias

Peters Anomaly (Kerato-Irido-Lenticular Dysgenesis) and Peters-Plus Syndrome

- Congenital central corneal opacity due to localized absence of corneal endothelium and Descemet membrane; bilateral (80%)
- Genetics/inheritance: sporadic; PAX6, PITX2, FOXC1, CYP1B1
- Ocular features: glaucoma (50%), microcornea, aniridia, retinal detachment, persistent fetal vasculature
 - Peters anomaly type 1: iridocorneal adhesions, avascular opacity
 - **Peters anomaly type 2:** failure of lens vesicle to separate from surface ectoderm; corneolenticular adhesions, cataract, vascularized opacity
 - Major indication for corneal transplant (penetrating keratoplasty)
- Peters-plus syndrome: Peters anomaly with systemic abnormalities
 - Cleft lip/palate, short stature, external ear abnormalities and hearing loss, intellectual disability, **heart defects**, central nervous system deficits, gastrointestinal and genitourinary defects, skeletal defects

Secondary Congenital Abnormalities of the Cornea

Congenital Masses

Congenital Corneal Keloid

- Reactive fibrous proliferation, appears as white raised mass; typically bilateral
- Histopathology: thick collagen bundles haphazardly arranged, focal areas of myoblastic proliferation
- Ocular associations: cataract, aniridia, glaucoma
- Systemic associations
 - Lowe (oculocerebrorenal) syndrome: X-linked recessive; cataract, renal failure, intellectual disability, seizures
 - Rubinstein-Taybi syndrome: cutaneous keloids
 - ACL syndrome: autosomal dominant; acromegaly, cutis verticis gyrata, corneal leukoma

Limbal (Epibulbar) Dermoid

- Congenital choristoma containing hair, sebaceous glands, sweat glands, muscle, bone, or teeth
- Clinical appearance: well-circumscribed, white round/oval mass most commonly at inferotemporal limbus
 - Corneal astigmatism: can cause anisometropic amblyopia; flattest meridian adjacent to dermoid
- Systemic associations: Goldenhar-Gorlin syndrome, trisomy 8 mosaicism syndrome, linear nevus sebaceous syndrome

Primary Congenital Glaucoma

- Corneal findings in primary congenital glaucoma
 - Buphthalmos: > 12 mm horizontal diameter during first year of life (normal 9.5-10.5 mm)
 - Corneal edema: due to increased intraocular pressure; 25% at birth, > 60% by 6 months
 - Haab striae: tears in Descemet from corneal stretching, lines are Horizontal or concentric to limbus

Birth Trauma

- Ruptures of Descemet membrane and corneal endothelium during childbirth
 Vertical or oblique posterior striae; ruptures usually heal but leave hypertrophic ridge of Descemet membrane
- Corneal edema: progressive, begins during first few days of life, can recur anytime; left eye > right eye
- Sequelae: high astigmatism, amblyopia

Congenital Anomalies of the Sclera

Blue Sclera

- Pathogenesis: increased thinning of sclera with visibility of uvea
- Management: hearing evaluations, bone strengthening

Associations with Blue Sclera

- Osteogenesis imperfecta type I and IIA
- Ehlers-Danlos type VI
- Hurler syndrome (MPS type I)
- Turner syndrome
- Marfan syndrome
- Werner syndrome (adult progeria)